Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа с. Кубанка» Переволоцкого района Оренбургской области

Рассмотрено педагогическим Советом	Утверждаю			
МБОУ «СОШ с. Кубанка»	Приказ № от « » 2023 г.			
Протокол № от « » 2023 г.	Директор $\overline{\text{МБОУ}}$ «С $\overline{\text{ОШ}}$ с.			
	Кубанка»			
	/Н.В. Алпатова			

Дополнительная общеобразовательная общеразвивающая программа «Робототехника»

Направленность программы: естественнонаучная. Адресат программы: обучающиеся 14-16 лет. Срок реализации программы: 1год. Разработчик программы: Прокофьева Н. А., учитель информатики МБОУ «СОШ с. Кубанка»

Структура программы:

- 1. Пояснительная записка.
- 2. Цель и задачи программы.
- 3. Содержание программы.
- 4. Планируемые результаты.
- 5. Календарный учебный график.
- 6. Условия реализации программы.
- 7. Формы аттестации.
- 8. Оценочные материалы.
- 9. Методические материалы.
- 10. Литература и интернет-ресурсы.

Пояснительная записка.

Ha сегодняшний лень политика России сконцентрирована технологическом развитии. Наиболее приоритетными его направлениями являются автоматизация, техническое оснащение промышленности, подготовка высококлассных инженерных кадров. Именно поэтому очень важно, начиная с дошкольного возраста формировать и развивать творческую аналитический ум, техническое мышление, формировать интегративные качества личности, обозначенные федеральными государственными образовательными стандартами дошкольного образования. В Федеральных государственных образовательных стандартах особое внимание уделено материально-техническим условиям и информационно - коммуникационным технологиям, так как они являются универсальными средствами формирования представлений дошкольников по различным образовательным областям.

В настоящее время для вовлечения дошкольников в процесс технического творчества большую популярность приобретают робототехника и лего-конструирование. Робототехника позволяет детям старшего дошкольного возраста легче и эффективнее перейти и адаптироваться от игровой деятельности к учебной. Конструирование моделей позволяет дошкольникам опытным путем осваивать элементарные основы физики и механики, а программирование действий и поведения моделей объединяют игру с исследовательской и экспериментальной деятельностью. Кроме этого, при объяснении работы модели происходит активное развитие словарного запаса и коммуникативных навыков ребенка. В итоге робототехника и лего- конструирование позволяют заложить на этапе дошкольного образования начальные технические навыки и истоки профессионально - ориентированной работы, направленной на пропаганду профессий инженерно-технической направленности

Направленность программы по робототехнике техническая. В процессе реализации данной программы ребенок учится решать технические задачи, используя сконструированные изапрограммированные им машины и механизмы.

Отпичительной особенностью данной программы является ее ориентированность на всестороннее развитие и реализацию основ технического

мышления и творческих способностейобучающихся.

Актуальность данного направления заключается в том, что в современном мире активно развивается робототехника, являющаяся важнейшей технической развития производства. Робототехника широко используется промышленности, строительстве, сельском хозяйстве, медицине, космонавтике и многих других отраслях. В ближайшие ГОДЫ области робототехнических автоматизированных будут использования систем стремительно расширяться. Именно поэтому, нужно уже сейчас задуматься о подготовке высококвалифицированных кадров, способных развивать эту отрасль прикладных наук.

Педагогическая целесообразность этой программы заключается в том, что она позволяет детям учиться решать реальные технические задачи на базе учебнометодического комплекса LEGO Education в форме познавательной игры. Преподавание курса предполагает использование компьютеров с установленным на них учебно-методическим комплексом LEGO Education, представляющим собой комплект учебно-методических материалов, информационной среды, среды программирования и моделирования, при помощи которого происходят: исследование (учащиеся изучают задачу), создание (учащиеся конструируют и программируют) и обмен результатами (учащиеся документируют проект и устраивают его презентацию). Таким образом, обучающиеся осваивают базовые проектные и исследовательские умения и формируют универсальные учебные действия.

Адресат программы: обучающиеся 14-16 лет.

Объем программы: 34 часа.

Форма обучения: очная.

Виды занятий по программе: программа предусматривает как индивидуальную работу обучающихся, так и командную, что способствует развитию у них навыков общения и эффективного взаимодействия внутри коллектива.

Срок освоения программы: 1 год.

Режим занятий: 1 час в неделю.

Цель программы: введение в начальное инженерно-техническое конструирование и основы робототехники с использованием робототехнического образовательного конструктора.

Задачи:

- ✓ ознакомить с конструктивным и аппаратным обеспечением платформы;
- ✓ дать первоначальные знания о конструкции робототехнических устройств;
- ✓ научить приемам сборки и программирования с использованием робототехнического образовательного конструктора;
 - ✓ обучить проектированию, сборке и программированию устройства;
- ✓ способствовать формированию творческого отношения к выполняемой работе;
- ✓ воспитывать умение работать в коллективе, эффективно распределять обязанности;
 - ✓ развивать творческую инициативу и самостоятельность;
- ✓ развивать психофизиологические качества обучающихся: память,
 внимание, способность логически мыслить, анализировать, концентрировать
 внимание на главном;
- ✓ развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Содержание программы:

Учебный план.

No॒	Наименование раздела, темы	Колич	ество	часов	Форма		
		Всег	Лек	Прак	аттестации/		
		o	ция	тика	контроля		
1	Lego Education: конструирование	11	3	8	Входная		
	простых механизмов				диагностика.		
					Тестирование.		
2	Lego Education: первые шаги в	11	3	8			
	робототехнике						
3	Lego Education: первые проекты в	12	3	9			
	робототехнике						
ИТ	ОГО	34	9	25			

Содержание

Модуль 1. Lego Education: конструирование простых механизмов.

Знакомство с набором конструктора Lego Education. Изучение деталей, способов их соединения и применения. Основы конструирования. Изучение простых механизмов: рычаг, колесо и ось, шкивы, зубчатые колеса и передачи.

Практические занятия. Сборка моделей по инструкциям, тестирование моделей.

Модуль 2. Lego Education: первые шаги в робототехнике

Робототехника и области ее применения. Знакомство с УМК Lego Education. Изучение среды программирования, функций блоков- операторов. Выполнение заданий с пошаговыми инструкциями.

Практические занятия. Сборка механизмов по инструкциям. Программирование моделей. Тестирование моделей.

Модуль 3. Lego Education: первые проекты в робототехнике

Конструирование и программирование роботов с различными механизмами движения и вращения. Конструирование моделей по инструкции, по образцу, по замыслу. Техническое творчество.

Практические занятия Сборка движущихся механизмов по инструкциям. Программирование моделей. Тестирование моделей.

Подведение итогов. (2 часа)

Планируемые результаты

- ✓ умение доводить работу до конца;
- ✓ умение формулировать свое мнение, объяснять его, отстаивать его с помощью логических аргументов самостоятельно определять и объяснять свои чувства и ощущения, возникающие в итоге рассуждения, обсуждения, соотносить их с самыми простыми, общими для всех людей правилами поведения (формирование основ общечеловеческих нравственных ценностей)
- ✓ в предложенных ситуациях делать выбор, по какому направлению идти, как поступить (опираясь на правила поведения и общечеловеческие ценности).
 - ✓ учиться самостоятельно делать свою работу;
- ✓ определять и формулировать цель деятельности на занятии с помощью педагога;
- ✓ учиться высказывать свое предположение (версию) при выборе возможных вариантовконструирования роботов;
- ✓ с помощью педагога объяснять набор наиболее подходящих вариантов для выполнения задания.
 - ✓ уметь работать в коллективе;
- ✓ донести свое мнение до других: слушать и понимать речь и замысел других;
- ✓ уметь договариваться о правилах общения и поведения во время конструирования робота инаписания программы.
- ✓ умение добывать новые знания: находить ответы на вопросы, используя разные источники информации, свой жизненный опыт и информацию, полученную на занятии;
- ✓ умение перерабатывать полученную информацию: делать выводы в результате совместнойработы всей команды;
- ✓ формирование умения осознанно работать, рассуждать, высказывать свое мнение.

знать:

- ✓ правила безопасной работы;
- ✓ основные компоненты конструкторов Lego Education и порядок их

сборки;

- ✓ конструктивные особенности различных моделей, механизмов;
- ✓ информационную среду, включающую в себя графический язык программирования;
 - ✓ основные приемы конструирования роботов;
- ✓ порядок создания алгоритма программы, действия робототехнических средств.

уметь:

- ✓ принимать или намечать учебную задачу, ее конечную цель;
- ✓ проводить сборку робототехнических средств, с применением конструктора Lego Education;
 - ✓ создавать программы для робототехнических средств;
- ✓ самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применение полученных знаний, приемов и опыта конструирования с использованием специальных элементов, и других объектов и т.д.);
- ✓ создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу;
 - ✓ прогнозировать результаты работы;
 - ✓ планировать ход выполнения задания;
 - ✓ рационально выполнять задание;
- ✓ руководить работой группы или коллектива, рационально распределять обязанности междучленами группы;
 - ✓ высказываться устно в виде сообщения, доклада или презентации.

Календарный учебный график

No	M	Чи	Форма	Время	Колич	Тема занятия	Место	Фор
π/	ec	сл	занятия	проведен	ество		проведе	ма
П	яц	o		ия	часов		ния	конт
	,			занятия				роля
	1	Mo	дуль «Lego	Education:	констру	ированиепростых механиз	MOB>>	1
<u>1.</u>		9	Наблюд			Профессия инженер -	СОШ с.	Bxo
			ение,			конструктор.	Кубанка	дная
			опрос,	16.00-		Знакомство с набором		диаг
			беседа	16.45	1	конструктора Lego		ност
				10.13		Education.		ика.
						Инструктаж по технике		
		1.0	11.6			безопасности.	COIII	
<u>2.</u>		16	Наблюд			Изучение деталей	СОШ с.	
	Сентябрь		ение, беседа	16.00-		конструктора Lego Education: название,	Кубанка	
	RTF		осседа	16.00-	1	Education: название, применение. Изучение		
	$Ce_{\mathbf{I}}$			10.43		способов соединения		
						деталей.		
<u>3.</u>		23	Наблюд	16.00		Конструкции. Создание	СОШ с.	
			ение,	16.00-	1	элементов конструкций.	Кубанка	
			беседа	16.45		10		
<u>4.</u>		30,	Наблюд			Рычаг: определение и	СОШ с.	
		7	ение,	16.00-	1	применение. Создание	Кубанка	
			беседа	16.45	1	моделей рычагов 1,2,3		
						рода.		
<u>5.</u>		14,	Наблюд	16.00-		Колесо и оси. Создание	СОШ с.	
		21	ение,	16.45	1	моделей с разделенными	Кубанка	
	J.	20	беседа			и закрепленными осями.	COIII -	
<u>6.</u>	Октябрь	28, 4	Наблюд			Блоки (шкивы):	СОШ с.	
	KT)	4	ение, беседа	16.00-		определение и применение. Создание	Кубанка	
	0		оеседа	16.00-	1	применение. Создание моделей с различными		
				10.73		видами ременной		
						передачи.		
<u>7.</u>		11,	Наблюд			Зубчатое колесо и	СОШ с.	
		18	ение,			зубчатая передача:	Кубанка	
			беседа	16.00		определение, виды и		
	2			16.00-	1	области применения.		
	(do			16.45		Создание моделей с		
	Ноябрь					повышающей и		
	14					понижающей передачей.		
<u>8.</u>		25	Опрос,	16.00-		Подведение итогов.	СОШ с.	Тест
			виктори	16.45	1		Кубанка	иров
			на.	10.13				ание

	Модуль «Lego Education: первые шаги в робототехнике»								
<u>9.</u>		2	Наблюд ение, беседа	16.00- 16.45	1	Робототехника: определение и области применения. Знакомство с УМК Lego Education.	СОШ с. Кубанка		
<u>10.</u>	Декабрь	9,1	Наблюд ение, беседа	16.00- 16.45	1	Изучение программного обеспечения Lego Education. Изучение блоков- операторов. Подключение смарт-хаба.	СОШ с. Кубанка		
<u>11.</u>		23	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «Улиткафонарик»	СОШ с. Кубанка		
<u>12.</u>		6	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «Вентилятор»	СОШ с. Кубанка		
<u>13.</u>	ф	13	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «Движущийся спутник»	СОШ с. Кубанка		
<u>14.</u>	январь	20	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «Робот шпион»	СОШ с. Кубанка		
<u>15.</u>		27	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «А. Майло, научный вездеход»	СОШ с. Кубанка		
<u>16.</u>		3	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «В. Датчикперемещения Майло»	СОШ с. Кубанка		
<u>17.</u>	Февраль	10	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «С. Датчикнаклона Майло»	СОШ с. Кубанка		
<u>18.</u>	Фев	17	Наблюд ение, беседа	16.00- 16.45	1	Задание с пошаговыми инструкциями «D. Совместная работа»	СОШ с. Кубанка		
<u>19.</u>		24	Опрос, виктори на.	16.00- 17.30	2	Подведение итогов	СОШ с. Кубанка	Тест иров ание	
	Модуль «Lego Education: первые проекты вробототехнике»								
<u>20.</u>	Март	3	Наблюд ение, беседа	16.00- 16.45	1	Проект «Робот-тягач»	СОШ с. Кубанка		
<u>21.</u>		10	Наблюд	16.00-	1	Проект «Гоночный	СОШ с.		

			ение,	16.45		автомобиль»	Кубанка	
			беседа					
<u>22.</u>		17	Наблюд ение, беседа	16.00- 16.45	1	Проект «Робот-Рыба»	СОШ с. Кубанка	
<u>23.</u>		24	Наблюд ение, беседа	16.00- 16.45	1	Проект «Робот- Лягушка»	СОШ с. Кубанка	
<u>24.</u>		31	Наблюд ение, беседа	16.00- 16.45	1	Проект «Робот- Гусеница»	СОШ с. Кубанка	
<u>25.</u>		7	Наблюд ение, беседа	16.00- 16.45	1	Проект «Пчела и цветок»	СОШ с. Кубанка	
<u>26.</u>	ель	14	Наблюд ение, беседа	16.00- 16.45	1	Проект «Робот-Змея»	СОШ с. Кубанка	
<u>27.</u>	Апрель	21	Наблюд ение, беседа	16.00- 16.45	1	Проект «Вертолет»	СОШ с. Кубанка	
28.		28	Наблюд ение, беседа	16.00- 16.45	1	Проект «Вилочный подъемник»	СОШ с. Кубанка	
<u>29.</u>		5	Наблюд ение, беседа	16.00- 16.45	1	Проект «Подметально- уборочная машина»	СОШ с. Кубанка	
<u>30.</u>	Май	12	Наблюд ение, беседа	16.00- 16.45	1	Проект «Луноход»	СОШ с. Кубанка	
31.		19	Наблюд ение, беседа	16.00- 17.30	2	Подведение итогов	СОШ с. Кубанка	Защи та прое кта
	ИТОГО				72			4

Условия реализации программы

Методическое обеспечение

Учебно-воспитательный процесс направлен на развитие природных задатков детей, на реализацию их интересов и способностей. При планировании и проведении занятий применяется личностно-ориентированная технология обучения, а также системно-деятельностный метод обучения.

Руководствуясь данной программой, педагог имеет возможность увеличить или уменьшить объем и степень технической сложности материала в зависимости от состава группыи конкретных условий работы.

Приемы и методы организации занятий.

Программой предусмотрено использование следующих методов обучения:

- словесные методы (учебная лекция, объяснение, рассказ, беседа, инструктаж);
- наглядные методы (демонстрация видеоматериалов, картинок, плакатов);
- практические методы (игровой метод, творческие задания, учебнопроизводительный труд, самостоятельная работа).

По дидактическим задачам используются следующие методы обучения:

- приобретение знаний;
- формирование умений и навыков;
- применение знаний;
- творческая деятельность;
- контроль.

По характеру познавательной деятельности учащихся в процессе обучения используются следующие методы:

- объяснительно-иллюстративный;
- репродуктивный;
- эвристический (частично-поисковый);

- проблемное изложение;
- исследовательский.

Методы стимулирования и мотивации деятельности

- методы стимулирования мотива интереса к занятиям: познавательные задачи, учебные дискуссии, опора на неожиданность, создание ситуации новизны, ситуации гарантированного успеха и т.д.
- методы стимулирования мотивов долга, сознательности, ответственности, настойчивости: убеждение, требование, приучение, упражнение, поощрение.

Основные принципы обучения.

- 1. *Доступность*. Предусматривает соответствие объема и глубины учебного материала уровню общего развития обучающихся в данный период, благодаря чему, знания и навыки могут быть сознательно и прочно усвоены.
- 2. *Связь теории с практикой*. Обязывает вести обучение так, чтобы обучаемые могли сознательно применять приобретенные ими знания на практике.
- 3. **Воспитательный характер обучения.** Процесс обучения является воспитывающим, ученикие только приобретает знания и нарабатывает навыки, но и развивает свои способности, умственные и моральные качества.
- 4. *Систематичность и последовательность*. Учебный материал дается по определенной системе и в логической последовательности с целью лучшего его освоения. Как правило, этот принцип предусматривает изучение предмета от простого к сложному, от частного к общему.
- 5. *Наглядность*. Для наглядности применяются существующие инструкции, схемы, видеоматериалы учебно-методического комплекса LEGO® Education WeDo 2.0 и собственного изготовления.
- 6. *Прочность закрепления знаний, умений и навыков*. Качество обучения зависит от того, насколько прочно закрепляются знания, умения и навыки учащихся. Поэтому закрепление умений и навыков должно достигаться неоднократным целенаправленным повторением и тренировкой.
- 7. *Индивидуальный подход в обучении*. В процессе обучения педагог исходит из индивидуальных особенностей детей (уравновешенный,

неуравновешенный, с хорошей памятью или не очень, с устойчивым вниманием или рассеянный, с хорошей или замедленной реакцией, и т.д.) и опираясь на сильные стороны ребенка, доводит его подготовленность до уровня общих требований.

Критерии и способы определения результативности:

В практике работы определены три вида контроля: предварительный, текущий, итоговый. Предварительный контроль проводится перед началом освоения программы с целью определения уровня подготовленности обучающегося к занятиям. Текущий и итоговый контроль успеваемости предполагает качественную характеристику (оценку) сформированности у обучающихся соответствующих компетенций.

Мониторинг результативности программы ведется по следующим направлениям:

- ✓ мониторинг уровня сформированности теоретических знаний и практических компетенций;
 - ✓ мониторинг личностного развития.

Для диагностики теоретических знаний используется опросы и викторины, которые проводятся с учетом возрастных особенностей обучающихся.

Для диагностики практических умений и навыков (компетенций) проводятся соревнования внутри объединения.

Формы аттестации/контроля:

- мониторинг знаний и навыков обучающихся в виде опросов, викторин, тестов, технических задач;
 - участие в соревнованиях и конкурсах;
 - защита проектов.

Кадровое обеспечение – 1 педагог

- Образование: ВП
- Специальность: математика, информатика и вычислительная техника.
- Стаж работы: 31 год.
- Категория: высшая.

Материально-техническое оснащение занятий

- 1. Кабинет, оборудованный необходимой мебелью (столы, стулья, доска, шкафы)
 - 2. Наборы обучающих конструкторов Lego Education.
- 3. Планшетные компьютеры с поддержкой протокола беспроводной связи Bluetooth 4.0.
 - 4. Учебно- методический комплекс LEGO Education.
 - 5. Hоутбук 1 шт.
 - 6. Проектор, сканер, принтер
 - 7. Батарейки АА

Список использованной литературы

- 1. LEGO Education. Комплект учебных проектов
- 2. Лифанова О.А. Конструируем роботов на LEGO Education Рободинопарк (ЭИ)
- 3. В.А. Козлова, Робототехника в образовании [издание в электронном виде]
- 4. Дистанционный курс «Конструирование и робототехника» [издание в электронном виде]
- 5. Ньютон С. Брага. Создание роботов в домашних условиях. М.: NTPress, 2007, 345 стр.;
- 6. Филиппов С.А. Робототехника для детей и родителей. С-Пб, «Наука», 2011г.